Como codificar seu próprio robô Algo Trading.
Já quis tornar-se um comerciante algorítmico com a capacidade de codificar seu próprio robô comercial? E ainda, você está frustrado com a quantidade de informações desorganizadas, enganosas e falsas promessas de prosperidade durante a noite? Bem, Lucas Liew, criador do curso de negociação algorítmica on-line AlgoTrading101, pode ter a solução para você. Tendo excelentes revisões e recebendo mais de 8.000 estudantes desde o primeiro lançamento em outubro de 2018, o curso de Liew - destinado a apresentar os fundamentos da negociação algorítmica de forma organizada - está sendo bastante popular. Ele é inflexível sobre o fato de que a negociação algorítmica é "não um esquema rápido e rápido". Com base em idéias de Liew e seu curso, delineadas abaixo estão os fundamentos do que é preciso para projetar, construir e manter seu próprio robô de negociação algorítmica .
O que é um Robô de Negociação Algorítmico.
No nível mais básico, um robô de negociação algorítmica é um código de computador que tem a capacidade de gerar e executar sinais de compra e venda nos mercados financeiros. Os principais componentes desse robô incluem regras de entrada que indicam quando comprar ou vender, regras de saída indicando quando fechar a posição atual e regras de dimensionamento de posição que definem as quantidades para comprar ou vender. (Para mais, veja: Noções básicas de negociação algorítmica: conceitos e exemplos.)
As principais ferramentas.
Obviamente, você vai precisar de um computador e uma conexão com a Internet. Depois disso, será necessário um sistema operacional Windows ou Mac para executar o MetaTrader 4 (MT4), uma plataforma de negociação eletrônica que usa o MetaQuotes Language 4 (MQL4) para codificar as estratégias de negociação. Embora o MT4 não seja o único software que se possa usar para construir um robô, ele possui uma série de benefícios significativos.
Enquanto a principal classe de ativos da MT4 é câmbio (FX), a plataforma pode ser usada para negociar ações, índices de ações, commodities e Bitcoins usando CFDs. Outros benefícios de usar o MT4 em oposição a outras plataformas incluem ser fácil de aprender, tem inúmeras fontes de dados FX disponíveis e é grátis. Infelizmente, o MT4 não permite a negociação direta em mercados de ações e futuros e a realização de análises estatísticas pode ser onerosa; no entanto, o MS Excel pode ser usado como uma ferramenta estatística suplementar.
Estratégias de negociação algorítmica.
É importante começar por refletir sobre alguns traços essenciais que toda estratégia de negociação algorítmica deve ter. A estratégia deve ser prudente no mercado em que é fundamentalmente sólida do ponto de vista do mercado e econômico. Além disso, o modelo matemático utilizado no desenvolvimento da estratégia deve basear-se em métodos estatísticos sólidos.
Em seguida, é crucial determinar quais informações o seu robô pretende capturar. Para ter uma estratégia automatizada, seu robô precisa ser capaz de capturar ineficiências de mercado identificáveis e persistentes. As estratégias de negociação algorítmica seguem um conjunto rígido de regras que aproveitam o comportamento do mercado e, portanto, a ocorrência de uma ineficiência única do mercado não é suficiente para construir uma estratégia. Além disso, se a causa da ineficiência do mercado não for identificável, não haverá maneira de saber se o sucesso ou o fracasso da estratégia foi devido ao acaso ou não.
Com o acima em mente, existem vários tipos de estratégia para informar o design do seu robô de negociação algorítmica. Estes incluem estratégias que aproveitam (i) notícias macroeconômicas (por exemplo, mudanças na folha de pagamento ou na taxa de juros não agrícolas); (ii) análise fundamental (por exemplo, usando dados de receita ou notas de versão de resultados); (iii) análise estatística (por exemplo, correlação ou co-integração); (iv) análise técnica (por exemplo, médias móveis); (v) a microestrutura do mercado (por exemplo, infração de arbitragem ou comercial); ou (vi) qualquer combinação do acima. (Para leitura relacionada, veja: O que é a eficiência do mercado?)
Projetando e testando seu robô.
Existem essencialmente quatro etapas necessárias para construir e gerenciar um robô comercial:
Pesquisa preliminar: esta etapa se concentra no desenvolvimento de uma estratégia que se adapte às suas próprias características pessoais. Fatores como perfil de risco pessoal, compromisso de tempo e capital comercial são importantes para pensar quando desenvolver uma estratégia. Você pode então começar a identificar as persistentes ineficiências do mercado mencionadas acima. Tendo identificado uma ineficiência do mercado, você pode começar a codificar um robô comercial adequado às suas próprias características pessoais.
Backtesting: Esta etapa se concentra em validar seu robô comercial. Isso inclui verificar o código para se certificar de que está fazendo o que deseja e entender como ele se realiza em diferentes intervalos de tempo, aulas de ativos ou diferentes condições de mercado, especialmente em eventos tipo cisne preto, como a crise financeira global de 2008.
Otimização: Então, agora você codificou um robô que funciona e, nesta fase, você deseja maximizar seu desempenho ao mesmo tempo em que minimiza o viés de superposição. Para maximizar o desempenho, primeiro você precisa selecionar uma boa medida de desempenho que capture elementos de risco e recompensa, bem como consistência (por exemplo, taxa Sharpe). O desvio excessivo ocorre quando o robô está muito próximo com dados anteriores; Esse robô vai dar a ilusão de alto desempenho, mas como o futuro nunca se assemelha completamente ao passado, ele pode realmente falhar.
Execução ao vivo: agora você está pronto para começar a usar dinheiro real. No entanto, além de estar preparado para os altos e baixos emocionais que você pode experimentar, existem alguns problemas técnicos que precisam ser abordados. Essas questões incluem selecionar um intermediário apropriado e implementar mecanismos para gerenciar riscos de mercado e riscos operacionais, como potenciais hackers e tempo de inatividade tecnológico. Também é importante nesta etapa verificar se o desempenho do robô é semelhante ao experimentado na fase de teste. Finalmente, o monitoramento contínuo é necessário para garantir que a eficiência do mercado que o robô foi projetado ainda existe. (Para mais, consulte: Como os Algoritmos de Negociação foram Criados.)
The Bottom Line.
Considerando que Richard Dennis, o lendário comerciante de commodities, ensinou a um grupo de estudantes suas estratégias de negociação pessoal que, em seguida, ganhou mais de US $ 175 milhões em apenas cinco anos, é completamente possível que os comerciantes inexperientes sejam ensinados com um conjunto rigoroso de diretrizes e se tornem comerciantes bem-sucedidos. No entanto, este é um exemplo extraordinário e os iniciantes definitivamente devem se lembrar de ter expectativas modestas.
Para ser bem sucedido, é importante não apenas seguir um conjunto de diretrizes, mas também entender como essas diretrizes estão funcionando. Liew enfatiza que a parte mais importante da negociação algorítmica é "entender em que tipos de condições de mercado o seu robô funcionará e quando vai quebrar" e "entender quando intervir". O comércio algorítmico pode ser gratificante, mas a chave para o sucesso é compreensão. Qualquer curso ou professor que prometa altas recompensas com mínima compreensão deve ser um sinal de alerta importante.
Fundamentos do comércio algorítmico: conceitos e exemplos.
Um algoritmo é um conjunto específico de instruções claramente definidas destinadas a realizar uma tarefa ou processo.
O comércio algorítmico (negociação automatizada, negociação em caixa preta ou simplesmente algo-trading) é o processo de uso de computadores programados para seguir um conjunto definido de instruções para colocar um comércio para gerar lucros a uma velocidade e freqüência impossíveis para um comerciante humano. Os conjuntos definidos de regras são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Além das oportunidades de lucro para o comerciante, o algo-trading torna os mercados mais líquidos e torna a negociação mais sistemática descartando impactos emocionais humanos nas atividades comerciais. (Para mais, consulte Picking the Right Algorithmic Trading Software.)
Suponha que um comerciante siga esses critérios de comércio simples:
Compre 50 ações de uma ação quando sua média móvel de 50 dias excede a média móvel de 200 dias. Vende ações da ação quando sua média móvel de 50 dias está abaixo da média móvel de 200 dias.
Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitorará automaticamente o preço das ações (e os indicadores de média móvel) e colocará as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais manter um relógio para preços e gráficos ao vivo, ou colocar as ordens manualmente. O sistema de negociação algorítmica automaticamente faz isso para ele, identificando corretamente a oportunidade comercial. (Para mais informações sobre as médias móveis, consulte Médias móveis simples, faça as tendências se destacarem.)
[Se você quiser saber mais sobre as estratégias comprovadas e pontuais que podem eventualmente ser trabalhadas em um sistema de comércio alorítico, confira o Curso de Torneio de Dia de Torneio da Invastopedia Academy. ]
Benefícios da negociação algorítmica.
A Algo-trading oferece os seguintes benefícios:
Negociações executadas com os melhores preços Posicionamento instantâneo e preciso da ordem comercial (com altas chances de execução nos níveis desejados) Negociações cronometradas corretamente e instantaneamente, para evitar mudanças de preços significativas Custos de transação reduzidos (veja o exemplo de falta de implementação abaixo) Verificações automatizadas simultâneas em múltiplos condições de mercado Reduziu o risco de erros manuais na colocação dos negócios Backtest o algoritmo, com base nos dados históricos e em tempo real disponíveis Reduzida a possibilidade de erros por comerciantes humanos com base em fatores emocionais e psicológicos.
A maior parte do dia-a-dia é a negociação de alta freqüência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em múltiplos mercados e múltiplos parâmetros de decisão, com base em instruções pré-programadas. (Para obter mais informações sobre o comércio de alta freqüência, consulte Estratégias e Segredos de Empresas de Negociação de Alta Freqüência (HFT).)
O Algo-trading é usado em muitas formas de atividades de comércio e investimento, incluindo:
Investidores de médio a longo prazo ou empresas de compra (fundos de pensão, fundos de investimento, companhias de seguros) que adquirem ações em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e de grande porte. Os comerciantes de curto prazo e os participantes do lado da venda (fabricantes de mercado, especuladores e arbitragentes) se beneficiam da execução comercial automatizada; Além disso, ajudas de algo-trading na criação de liquidez suficiente para os vendedores no mercado. Os comerciantes sistemáticos (seguidores de tendências, comerciantes de pares, hedge funds, etc.) acham muito mais eficiente programar suas regras comerciais e permitir que o programa seja comercializado automaticamente.
O comércio algorítmico proporciona uma abordagem mais sistemática ao comércio ativo do que os métodos baseados na intuição ou instinto do comerciante humano.
Estratégias de negociação algorítmica.
Qualquer estratégia de negociação algorítmica exige uma oportunidade identificada que seja rentável em termos de melhoria de ganhos ou redução de custos. As seguintes são estratégias de negociação comuns usadas em algo-trading:
As estratégias de negociação algorítmicas mais comuns seguem as tendências em médias móveis, fuga de canais, movimentos no nível de preços e indicadores técnicos relacionados. Estas são as estratégias mais fáceis e simples de implementar através de negociação algorítmica porque essas estratégias não envolvem fazer previsões ou previsões de preços. Os negócios são iniciados com base na ocorrência de tendências desejáveis, que são fáceis e direitas de implementar através de algoritmos sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre as estratégias de negociação de tendências, consulte: Estratégias simples para capitalizar as tendências.)
Comprar um estoque cotado duplo a um preço mais baixo em um mercado e simultaneamente vendê-lo a um preço mais alto em outro mercado oferece o diferencial de preço como lucro ou arbitragem sem risco. A mesma operação pode ser replicada para ações versus instrumentos de futuros, pois os diferenciais de preços existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de forma eficiente.
Os fundos do índice definiram períodos de reequilíbrio para que suas participações fossem compatíveis com seus respectivos índices de referência. Isso cria oportunidades rentáveis para comerciantes algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos base, dependendo do número de ações no fundo do índice, apenas antes do reequilíbrio do fundo do índice. Essas negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços.
Muitos modelos matemáticos comprovados, como a estratégia de negociação neutra do delta, que permitem a negociação de combinações de opções e sua segurança subjacente, onde os negócios são colocados para compensar deltas positivos e negativos, de modo que o portfólio delta seja mantido em zero.
A estratégia de reversão média baseia-se na ideia de que os preços altos e baixos de um bem são um fenômeno temporário que retorna periodicamente ao seu valor médio. Identificar e definir uma faixa de preço e implementar algoritmos com base em isso permite que os negócios sejam colocados automaticamente quando o preço do recurso entra e sai do seu alcance definido.
A estratégia de preços médios ponderados por volume quebra uma grande ordem e libera pedaços menores determinados dinamicamente da ordem para o mercado usando perfis de volume histórico específicos de estoque. O objetivo é executar a ordem perto do preço médio ponderado do volume (VWAP), beneficiando assim o preço médio.
A estratégia de preço médio ponderado no tempo quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando intervalos de tempo uniformemente divididos entre o início e o fim do tempo. O objetivo é executar a ordem perto do preço médio entre os horários de início e término, minimizando assim o impacto no mercado.
Até que a ordem comercial seja totalmente preenchida, este algoritmo continua enviando ordens parciais, de acordo com o índice de participação definido e de acordo com o volume negociado nos mercados. A "estratégia de etapas" relacionada envia ordens a uma porcentagem definida pelo usuário de volumes de mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge os níveis definidos pelo usuário.
A estratégia de falta de implementação visa minimizar o custo de execução de uma ordem através da negociação do mercado em tempo real, economizando assim o custo da ordem e beneficiando do custo de oportunidade da execução atrasada. A estratégia aumentará a taxa de participação direcionada quando o preço das ações se mover de forma favorável e diminuí-lo quando o preço das ações se mover de forma adversa.
Existem algumas classes especiais de algoritmos que tentam identificar "acontecimentos" do outro lado. Esses "algoritmos de sniffing", usados, por exemplo, por um market maker market market têm a inteligência interna para identificar a existência de qualquer algoritmo no lado da compra de uma grande ordem. Essa detecção através de algoritmos ajudará o fabricante de mercado a identificar grandes oportunidades de ordem e permitir que ele se beneficie ao preencher os pedidos a um preço mais alto. Isso às vezes é identificado como front-running de alta tecnologia. (Para obter mais informações sobre negociação de alta freqüência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.)
Requisitos técnicos para negociação algorítmica.
Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. São necessários os seguintes:
Conhecimento de programação de computador para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricado Conectividade de rede e acesso a plataformas de negociação para colocar os pedidos Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de colocar pedidos A capacidade e infra-estrutura para voltar a testar o sistema uma vez construído, antes de entrar em operação em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo.
Aqui está um exemplo abrangente: o Royal Dutch Shell (RDS) está listado na Amsterdam Stock Exchange (AEX) e London Stock Exchange (LSE). Vamos construir um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes:
AEX negocia em Euros, enquanto a LSE negocia em libras esterlinas. Devido à diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguido de ambas as trocas comerciais simultaneamente durante as próximas horas e depois de negociar apenas na LSE durante a última hora à medida que o AEX fecha .
Podemos explorar a possibilidade de negociação de arbitragem nas ações da Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes?
Um programa de computador que pode ler os preços atuais do mercado Os feeds de preços de LSE e AEX A taxa de câmbio para a taxa de câmbio GBP-EUR Capacidade de colocação de pedidos que podem rotear a ordem para a troca correta do recurso Back-testing em feeds históricos de preços.
O programa de computador deve executar o seguinte:
Leia o preço de entrada do estoque RDS de ambas as bolsas Usando as taxas de câmbio disponíveis, converta o preço de uma moeda para outra. Se houver uma discrepância de preço suficientemente grande (descontando os custos de corretagem) levando a uma oportunidade rentável, então coloque a compra ordem em troca de preços mais baixos e ordem de venda em troca de preços mais elevados Se as ordens forem executadas conforme desejado, o lucro de arbitragem seguirá.
Simples e fácil! No entanto, a prática de negociação algorítmica não é simples de manter e executar. Lembre-se, se você pode colocar um comércio gerado por algo, os outros participantes do mercado podem também. Conseqüentemente, os preços flutuam em milissegundos e até mesmo em microssegundos. No exemplo acima, o que acontece se o seu comércio de compras for executado, mas o comércio de vendas não acontece à medida que os preços de venda mudam quando o seu pedido atinge o mercado? Você vai acabar sentado com uma posição aberta, tornando sua estratégia de arbitragem inútil.
Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos de tempo entre ordens comerciais e execução e, o mais importante de tudo, algoritmos imperfeitos. O algoritmo mais complexo é o backtesting mais rigoroso antes de ser posto em ação.
The Bottom Line.
A análise quantitativa do desempenho de um algoritmo desempenha um papel importante e deve ser examinada criticamente. É excitante ir pela automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso certificar-se de que o sistema está completamente testado e os limites exigidos são definidos. Os comerciantes analíticos devem considerar a aprendizagem de sistemas de programação e construção por conta própria, ter confiança em implementar as estratégias certas de forma infalível. O uso cauteloso eo teste completo de algo-trading podem criar oportunidades rentáveis. (Para mais informações, consulte Como codificar seu próprio robô Algo Trading.)
Software de negociação.
DEFINIÇÃO de 'Software de negociação'
Programas de computador que facilitam a comercialização de produtos financeiros, como ações e moedas. O software geralmente é fornecido por corretoras que permitem que seus clientes troquem produtos financeiros e gerenciem suas contas. Diferentes corretoras terão um software diferente que determina a interface na qual os negócios são feitos e a informação é pesquisada. Outros softwares podem ser comprados de terceiros para aprimorar ou adicionar o que fornece uma corretora.
BREAKING Down 'Software de Negociação'
Os softwares de negociação proliferaram nos últimos anos devido à crescente popularidade das redes de comunicação eletrônica ou ECNs, que são redes comerciais alternativas que permitem a negociação fora das bolsas tradicionais ou Bourses. As ECNs reduziram consideravelmente os custos de transação, permitindo que muitas corretoras de desconto e serviços completos ofereçam software de negociação a seus clientes com pouco ou nenhum custo.
O software deve ser fácil de navegar e, estável e, pelo menos, extremamente seguro. Muitas vezes é uma característica ignorada ao selecionar uma corretora, em relação a outros traços, como custo ou popularidade.
Tipos comuns de algoritmos de negociação.
Esta é uma breve visão geral dos tipos comuns de algoritmos de finanças quantitativas que são negociados hoje. Claro, isso é apenas uma visão geral, e não abrangente! Deixe-me saber se você acha que existem outros tipos de algo que eu deveria abranger.
Inversores de reversão média assumem que o preço das ações ao longo do tempo retornará ao seu preço médio de longa data. Eles usam a análise do preço das ações para determinar os limites de negociação da significância estatística. Se o estoque estiver negociando significativamente acima da média móvel, eles serão curtos. Por outro lado, se o estoque tende significativamente abaixo da média móvel, eles vão comprá-lo. Veja o exemplo de estratégia Avaliação - Compras de pechincha.
Os investidores criam estratégias que dependem da época do ano. Está bem documentado que os mercados tendem a ter melhores retornos no final do ano e durante os meses de verão, enquanto setembro geralmente é um mês com retornos mais baixos. Para evitar perda de capital, alguns investidores optam por vender suas posições com perdas no final de dezembro para beneficiar da indenização fiscal. Em janeiro, os investidores retornam em triunfo e compram estoques de pequena e menor valor, elevando seus preços. Os preços das ações também se diferenciam em torno de feriados e períodos de fechamento do trimestre. Uma estratégia simples é comprar e manter ações (SPY) de outubro a abril e depois girar para comprar e manter títulos (BSV) de maio a setembro. Veja o exemplo da Estratégia Sentimento - Compre o boato, venda as novidades.
O comércio de Análise Sentimental deriva da psicologia da multidão, onde os investidores ficam atualizados nas notícias recentes e as ações de compra prevêem a reação da multidão. Eles tentam capturar mudanças de preços de curto prazo e colher os benefícios rápidos. Os investidores podem monitorar fontes, incluindo tendências de pesquisa do Google, meios de comunicação, blogs / fóruns e postagens do Twitter. Veja a estratégia de exemplo Fundamental Investing.
Esta é uma forma de avaliar o verdadeiro valor intrínseco de um estoque, examinando fatores de macro-nível, como indicadores econômicos, comparações de indústria e setor, e análise de demonstrações financeiras da empresa. Os cálculos derivados de dados reais tentam modelar o valor verdadeiro do estoque, que é comparado ao preço de mercado da ação - direcionando a decisão de comprar ou vender. Exemplo de pontos de dados para análise fundamental incluem receitas das empresas, ganhos, crescimento futuro, retorno sobre o patrimônio líquido e margens de lucro. Investimento Técnico.
Este método examina a atividade do mercado passado para mudanças no preço e volume do estoque, acreditando que o desempenho histórico é indicativo de resultados futuros. Os investidores usam gráficos, estatísticas e outras ferramentas para descobrir padrões nos dados para prever futuros movimentos de preços. Esse estilo de investimento não analisa o valor intrísico do estoque, mas sim o movimento futuro da segurança. Para adicionar análise técnica ao seu código de Quantopian, veja a biblioteca de código aberto ta-lib.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
Comentários estão fechados.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta de prestação de serviços de consultoria de investimento pela Quantopian.
Além disso, o material não oferece nenhuma opinião em relação à adequação de qualquer segurança ou investimento específico. Nenhuma informação contida neste documento deve ser considerada como uma sugestão para se envolver ou abster-se de qualquer curso de ação relacionado ao investimento, já que nenhuma das empresas atacadas ou nenhuma das suas afiliadas está a comprometer-se a fornecer conselhos de investimento, atuar como conselheiro de qualquer plano ou entidade sujeito a A Lei de Segurança de Renda de Aposentadoria do Empregado de 1974, conforme alterada, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em capacidade fiduciária em relação aos materiais aqui apresentados. Se você é um aposentadorio individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado a Quantopian sobre se qualquer idéia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não oferece garantias sobre a precisão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas.
O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, solicitação de compra ou recomendação ou endosso para qualquer garantia ou estratégia, nem constitui uma oferta para fornecer consultoria de investimento ou outros serviços por meio de Quantopian. Além disso, o conteúdo do site não oferece nenhuma opinião em relação à adequação de qualquer garantia ou qualquer investimento específico.
A Quantopian não oferece garantias quanto à exatidão ou integridade das opiniões expressas no site. Os pontos de vista estão sujeitos a alterações e podem ter se tornado pouco confiáveis por vários motivos, incluindo mudanças nas condições do mercado ou nas circunstâncias econômicas. Todos os investimentos envolvem risco - incluindo perda de principal. Você deve consultar um profissional de investimentos antes de tomar decisões de investimento.
Estratégias simples para capitalizar as tendências.
Existem dois tipos de mercados nos quais um comerciante comercializará - um mercado de tendências ou um mercado paralelo. Em qualquer período de tempo, um comércio pode ser mantido através de ambos os tipos de mercado, mas é quando o comércio é inserido e em que tipo de mercado (tendências ou laterais) que determina seu nível de risco. R isk é simplesmente a quantidade de movimento de preços que esperamos antes que possamos dizer com alguma certeza que o comércio não está se movendo em nossa direção (pelo menos por agora) e está se movendo devido a fatores além do simples ruído do mercado. (Para aprender a trocar um mercado lateral, leia o valor encontrado em um mercado paralelo.)
Nas tendências, a maneira mais comum de estabelecer risco é levar o preço de entrada menos o mais recente balanço baixo para posições longas e o mais recente giro alto menos o preço de entrada para posições curtas. Em seguida, multiplique esse número pelo número de ações ao qual o comerciante está exposto. Uma pequena almofada deve ser adicionada ao alto / baixo para permitir flucations moderadas. Se um antigo balanço baixo for penetrado em uma tendência de alta, existe a possibilidade de que a tendência está a reverter, ou no mínimo, a tendência é em algum perigo de terminar e, portanto, o comerciante deve sair do comércio até que a tendência se revele com convicção.
A definição de uma tendência de alta é o aumento de preços mais altos e os mínimos de preços mais altos. Em uma tendência de baixa, o preço faz aumentos mais baixos e baixos baixos. Então, se você entrar em um comércio em uma tendência de alta e uma baixa anterior é penetrada, esta não é mais uma tendência de alta por definição, portanto, o comerciante deve sair e aguardar a tendência de restabelecer a própria. Isso será sinalizado pelo preço movendo-se mais alto que um antigo balanço alto. (Para mais, confira castiçais e osciladores para operações sucessivas Swing.)
Entrando em uma tendência ascendente.
Infelizmente, a teoria nem sempre funciona no mundo real. A desvantagem dessa entrada é que, se os preços se transformarem e começam a se mover na direção oposta da tendência, nosso risco é maior que o que seria se usássemos um ponto de entrada alternativo e inferior.
Entrando em uma tendência lateral.
A desvantagem é que não sabemos se a tendência continuará, pois os preços podem se mover apenas um pouco mais alto, mas não conseguem empurrar acima do alto do aluguel. Outra contingência que precisamos ter em conta é que as linhas de tendência nem sempre são perfeitas - os preços podem não chegar a uma linha de tendência sempre, tornando a entrada mais subjetiva, ou os preços podem saltar de uma linha de tendência apenas para reverter e se mover pela linha de tendência. Podemos também ter várias linhas de tendência, já que os mercados geralmente se dividem abaixo de uma linha de tendência apenas para serem suportados por uma nova, como é o caso na Figura 1, que mostra várias entradas potenciais. (Para mais, leia os preços das ações de trilha com as Tendências.)
Juntar as peças.
Claro, como mencionado anteriormente, as desvantagens para esses métodos de entrada ainda estão lá. Os preços podem virar a qualquer momento, independentemente da confirmação que recebemos. Assim, é muito importante manter uma perda de parada em todas as negociações, e quando há uma indicação de que uma tendência não vai continuar, o (s) comércio (s) devem ser encerrados.
No comments:
Post a Comment